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This article examines the structure and stability of detonations in mixtures of gases
and solid particles via direct numerical simulation. Cases with both reactive and
inert particles are considered. First, the two-phase flow model is presented and the
assumptions that it is based upon are discussed. Steady-wave structures admitted
by the model are subsequently analysed. Next, the algorithm employed for the
numerical simulations is described. It is a recently developed high-order shock-
capturing algorithm for compressible two-phase flows. The accuracy of the algorithm
has been verified through a series of code validation and numerical convergence
tests, some of which are included in this article. Subsequently, numerical results for
both one-dimensional and two-dimensional detonations are presented and discussed.
These results show that the mass, momentum and energy transfers between the
two phases result in detonation structures that are substantially different from
those observed in the corresponding purely gaseous flows. The effect of certain
important parameters, such as particle reactivity, particle volume fraction, and particle
diameter, are examined in detail. The numerical results predict that increased particle
reactivity suppresses the flow instabilities and increases the detonation velocities. It is
further predicted that sufficiently high particle volume fractions can cause detonation
quenching regardless of particle reactivity.

1. Introduction
The study of detonations has attracted considerable attention over the years

because of the need for prevention of accidental explosions, potential applications to
hypersonic propulsion systems, and various industrial applications. In the beginning,
most efforts were concentrated in the study of purely gaseous detonations. Thus far,
many workers have contributed to the analysis of the structure of these flows. As a
result, it has become possible to identify the important mechanisms that influence the
stability and propagation of such detonations.

Progress in the field of gaseous detonations paved the way for the study of
the significantly more complex phenomena that occur in detonations in two-phase
mixtures. The motivation for studying two-phase detonations stems from the range
of their applicability. Indeed, such phenomena play an important role in applications
such as proposed hypersonic propulsion engine concepts (scramjet, pulse detonatation
engine, oblique detonation wave engine), deflagration-to-detonation transition (DDT)
in explosive granular materials, and others. The addition of particles in detonatable
gases introduces interaction mechanisms between the two phases and new temporal
and spatial scales. For example, the energy release behind the leading front might
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not be monotonic and might extend over a long region. At present, these interaction
mechanisms are not well understood.

Besides their applicability, the study of these flows is of great theoretical interest.
For example, the derivation of reliable two-phase detonation and DDT models has
been the subject of much work over the years. To this day, many questions on this
topic remain open and a universally accepted model for such two-phase flows does not
exist (see discussion in the next section). On the other hand, the numerical simulation
of these flows is also a challenging task, even with simple two-phase flow models,
owing to the large number of spatial and temporal scales associated with them. In
particular, simulations of multi-dimensional two-phase detonations are scarce.

To date there have been several experimental studies on two-phase detonations with
reactive particles (e.g. Veyssiere & Manson 1982; Peraldi & Veyssiere 1986; Veyssiere
1986; Zhang & Gronig 1991a, b, 1992). Most of these studies were conducted with
aluminium or starch particles. However, there is significant disagreement in the
measurements of these studies, so that they cannot be considered conclusive. For
example, the detonation velocity measurements on starch suspensions by Zhang &
Gronig (1991a) was up to four times higher than those reported in Peraldi & Veyssiere
(1986). In these experiments, the particle volume fraction was the same, but there
were differences in the particle diameter and the tube diameter. This implies that
two-phase detonations can be very sensitive to the physical parameters involved and
to the dimensions of the flow domain.

In contrast, only a few experimental studies with inert particles have been
performed. These include the investigations by Laffite & Bouche (1959), Saint-Cloud
et al. (1976), Mamontov, Mitrofanov & Sabbotin (1980) and Kaufmann et al. (1984).
These studies suggested that very small particle diameters or sufficiently high mass
loadings can result in detonation failure. (Mass loading is defined as the ratio of
particle mass to gaseous mass). More recently, Smirnov, Zverev & Tyurnikov (1996)
examined computationally and experimentally the initiation of detonations by a shock
wave entering a mixture of gas and (inert or reactive) particles.

Along with the experimental studies, there have been efforts toward the numerical
simulation of two-phase detonations. Such simulations, however, are time-consuming
and difficult to perform because of the complexity of the interaction mechanisms
between gas and particles, and the presence of a multitude of temporal and spatial
scales. Required resolutions can easily exhaust most of the computational resources
that are currently available. Furthermore, precise data for the oxidization and pyrolysis
of certain substances of practical interest (e.g. starch) are not available. As a result, re-
latively few studies have been devoted to the numerical propagation of detonations in
dilute mixtures of gases and heavy solid particles. For example, Khaisanov & Veyssiere
(1996) and Uphoff, Hanel & Roth (1995) examined the structure of detonations in
mixtures of gases and fine aluminium particles. More recently, Veyssiere, Arfi &
Khaisanov (1999) presented results for detonations in starch suspensions. These
studies, however, were limited to one-dimensional flows and examined very dilute
mixtures only (in particular, the volume occupied by the particles was neglected).

These earlier studies have shown that three different modes of propagation are
possible. In the first mode, referred to as ‘single-front detonation’, the leading front
is maintained by the heat release of both gaseous and solid-phase reactions. This
is the mode with the highest detonation speed. The second mode is the ‘pseudo-gas
detonation’. In this case, the front is supported by the burning of the gaseous reactants
only. Since the energy from the particle burning is released slowly and away from
the leading shock, the speeds of pseudo-gas detonations are smaller than those of
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single-front detonations. The third mode is the ‘double-front detonation’. In this mode,
the leading front is again supported by the gaseous reactions only. The burning of the
particles occurs behind the gaseous reaction zone and gives rise to a strong secondary
pressure wave which might evolve into a discontinuity; see, Khaisanov & Veyssiere
(1996), Uphoff et al. (1995). However, it is as yet unclear under which conditions
and mixture compositions a second discontinuity can be formed; see the relevant
discussion in Veyssiere et al. (1999). Existence of these three modes of detonation has
been observed experimentally by Peraldi & Veyssiere (1986) and Veyssiere (1986).

So far, only a few efforts have been devoted to multi-dimensional simulations
of detonations in mixtures of gases and reactive particles. Apparently, only two
previous articles on this topic have been published. Saurel (1996) performed numerical
studies on detonation waves inside the combustion chamber of a RAM accelerator.
He employed a detailed reaction mechanism for mixtures of H2/O2/He gases and
hydrazine nitrate particles. Those simulations, however, were conducted on coarse
grids (of the order of 2000 cells), suggesting that the reaction zone had not been
adequately resolved. Eidelman & Yang (1993) examined the evolution of a blast wave
in a system consisting of a cloud with a very small particle volume fraction and a
ground layer with very high particle volume fractions. In these simulations only the
solid particles were reactive (the gaseous components of the mixture were inert).

Numerical results for detonations with inert particles are also scarce. To the author’s
knowledge, only Loth, Sivier & Baum (1997) have published a systematic study on
this subject. They employed a two-step induction mechanism to model the chemical
reactions that take place in a dilute stoichiometric H2/O2 system, and they performed
simulations on a rectangular computational domain with reflecting-wall conditions
on the top and bottom boundaries. However, their hydrodynamic model neglects the
volume occupied by the particles. This assumption might not be valid always. In fact,
numerical results presented in § § 5 and 6 of this paper show that a particle compaction
zone is formed behind the detonation wave. There are cases where the particle volume
fraction becomes large and, therefore, non-negligible inside this compaction zone, even
though the quiescent mixture ahead of the front is dilute. Examples of such cases
include flows that result in detonation quenching.

In this paper, we are concerned with the analysis and numerical study of detonations
in dilute mixtures with both reactive and inert particles. Such studies are useful for
hazard assessment in multi-phase media. They can also provide validation of proposals
for performance improvement of hypersonic propulsion engine concepts by means
of the addition of fine metallic particles (Cambier & Bogdanoff 1993). The main
objectives of this work are (i) to obtain information on the structural characteristics of
the various modes of propagation of two-phase detonations; (ii) to study the role
of certain physical parameters, such as particle reactivity, particle volume fraction
and particle diameter; and (iii) to identify the conditions that might lead to the
establishment of steady detonation waves, as well as the conditions that can lead to
detonation quenching. It must be emphasized that our study is not concerned with
detonations in mixtures with explosive granular materials, such as HMX. Instead,
we consider solid incompressible particles that are at least three orders of magnitude
heavier than the gaseous components of the mixture. Further, we consider particles
which can react, if at all, only at substantially high temperatures.

As regards simulations for two-phase mixtures with inert particles, it should be
mentioned that there are several differences between our study and that conducted
by Loth et al. (1997). First, the two-phase flow models employed in our study
does not make the assumption of negligible particle volume fraction. Secondly, in our
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simulations, periodic conditions have been imposed on the top and bottom boundaries
instead of reflecting-wall conditions. Finally, there is a difference between the reaction
models employed. In particular, we employ a simplified one-step Arrhenius kinetics
law instead of a two-step model with induction parameter. These choices of boundary
conditions and reaction models were made to facilitate comparisons with published
numerical results for purely gaseous detonations, such as those of Bourlioux & Majda
(1992), and Papalexandris, Leonard & Dimotakis (2002). Such comparisons have not
previously appeared in the literature.

The paper is organized as follows. First, we provide a description of the two-phase
flow model that is employed in our study and we discuss the assumptions that this
model is based upon. Next, we present an analysis of the steady-wave solutions that
are admitted by the flow model. Subsequently, we present a brief description of the
numerical method that has been implemented for the simulations. The next part of the
paper is concerned with results from the simulations of one-dimensional detonations.
The numerical results elucidate the effect of solid particles on the structure of one-
dimensional flows, but they also provide insight on basic features that are encountered
in multidimensional flows. Grid convergence tests and parametric studies on the role
of various physical parameters have also been included. In the last part of the
paper, simulations of two-dimensional detonations are presented and analysed. The
presentation of the numerical results is accompanied by comparisons with previous
numerical and/or experimental studies.

2. Description of the two-phase flow model
For compressible, purely gaseous flows, the Eulerian description of motion has

been employed almost exclusively. For flows with particles, we can select either the
Eulerian or Langrangian description for the motion of the particles. The Lagrangian
description is better suited, and quite often employed, for flows at low Mach numbers.
On the other hand, numerical studies show that for particle motion in high-Mach-
number flows, the Eulerian description is more efficient (see the discussion in Sivier,
Loth & Baum 1996; Saurel & Lemetayer 2001). In the present study, the Eulerian
description has been employed for both phases. The description of the two-phase
model is given below.

Consider a dilute and monodisperse mixture of gas and heavy solid particles. The
gaseous phase consists of two calorifically perfect gases: the reactive species A and
the inert species B . These two substances are assumed to have equal specific heats.
The species A reacts according to

A −→ B.

The solid phase consists of a single substance, C, which is assumed to be completely
incompressible. In some cases this substance is considered to be reactive, while in
others it is considered to be inert. If C is reactive, it reacts according to the simplified
law

C −→ B.

The particle number density is assumed to be high enough that the solid particles can
be modelled as a continuum. The flows of the two phases are assumed to be inviscid
and non-heat-conducting. Viscosity and heat-transfer effects are taken into account
only on the surface of the solid particles.
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Let φg , pg , ρg , Tg , ug = (ug, vg), eg and z denote volume fraction, pressure, density,
temperature (normalized by the gas constant), velocity, total specific energy and
reactant mass fraction for the gaseous phase, respectively. The gaseous reactant mass
fraction z satisfies 0 � z � 1. It equals unity when the gaseous phase consists only of
the reactive substance A, and it equals zero when the gaseous phase consists only of
the inert substance B . Similarly, let φs , ρs , Ts , us = (us, vs), es and Ns denote volume
fraction, density, temperature, velocity, total specific energy and number density for
the solid phase, respectively. The gaseous phase follows the perfect-gas constitutive
relation,

pg = ρgTg, (1)

where the gas temperature has been normalized by the gas constant.
The partial density, ρ̃g , and partial pressure, p̃g , of the gaseous phase are defined

as

ρ̃g = ρgφg, p̃g =pgφg. (2)

The total specific energy of the gaseous phase is given by

eg =
pg

ρg(γ − 1)
+ 1

2
|ug|2 + q1z, (3)

where γ is the specific-heat ratio (assumed common for both A and B), and q1 is the
heat release from the gaseous reaction.

The volume fractions are related to the particle number density particle via

φs = Ns

πd3
p

6
, φs + φg =1, (4)

where dp is the particle diameter. The partial solid density is defined as

ρ̃s = ρsφs. (5)

Finally, the expression for the total specific energy of the solid phase is

es = csTs + 1
2
|us |2 + q2, (6)

where cs is the specific heat of the solid substance C, and q2 is the heat release from
the burning of the solid particles.

The conservation equations for the gaseous phase are

∂ρ̃g

∂t
+ ∇ · (ρ̃gug) = Γ, (7a)

∂ρ̃gug

∂t
+ ∇ · (ρ̃gugug) + ∇p̃g = F + Γ us, (7b)

∂ρ̃geg

∂t
+ ∇ · (ug(p̃g + ρ̃geg)) = F · us + Γ es + Q, (7c)

∂ρ̃gz

∂t
+ ∇ · (ρ̃gzug) = R. (7d)

The conservation equations for the solid phase are

∂ρ̃s

∂t
+ ∇ · (ρ̃sus) = −Γ, (8a)

∂ρ̃sus

∂t
+ ∇ · (ρ̃susus) = −(F + Γ us), (8b)

∂ρ̃ses

∂t
+ ∇ · (ρ̃suses) = −(F · us + Γ es + Q), (8c)
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∂Ns

∂t
+ ∇ · (Nsus) = 0. (8d)

Equation (8d) describes the conservation of the number density of the particles.
Although not employed here, phenomena such as breakup or coalescence of particles
can be modelled with the addition of a suitable source term in (8d).

In mixtures with reactive particles, the solution to (8a) and (8d) is inserted into (4)
to compute the spatial distribution of the particle diameter, dp . For mixtures with inert
particles we have q2 = 0, Γ = 0. Then, it follows (by virtue of the incompressibility
assumption of the solid phase) that when the solid particles are inert, (8a) and (8d)
become identical.

In the conservation equations above, F is the term that describes the aerodynamic
force acting upon the particles. In the present study, this force is approximated by
the drag on a sphere moving at constant speed at low Reynolds numbers, i.e.

F =3 π cD µ dp (us − ug) Ns, (9)

where cD is the drag coefficient, and µ is the viscosity of the gas.
Additionally, Q is the source term that describes the heat transfer between the two

phases. We assume steady conduction, so that Q is given by

Q = π
cpNu

Pr
µ dp (Ts − Tg) Ns. (10)

In (10), Pr and Nu are the Prandtl and Nusselt numbers, respectively, while cp is the
specific heat of the gaseous phase under constant pressure. As mentioned above, cp

is assumed to be the same for both gaseous species A and B .
The gaseous reaction is described by a simple one-step Arrhenius kinetics law,

R = − K1 ρ̃g z exp (−Ea/Tg), (11)

where K1 and Ea are the reaction’s pre-exponential factor and activation energy,
respectively. On the other hand, the burning of the particles is modelled by the
following ignition-type mechanism,

Γ =

{
0, Ts < Tign,

K2 ρ̃s/d
2
p, Ts � Tign,

(12)

where K2 is the time constant of the particle burning, and Tign is the ignition
temperature beyond which particles begin to react.

An empirical relationship given by Chapman & Cowling (1961) is employed for
the calculation of the gas viscosity, µ, as a function of Tg . This relationship is derived
for air and in dimensional form reads

µ = 1.71 × 10−5

(
Tg

Tr

)0.77

(Kg s−3), (13)

where Tr = 273 K. In the present study, it is assumed that the detonatable gas is
a H2/air mixture, with small concentration of H2, Thus, it is acceptable to employ
the above relationship for the purposes of our study. Non-dimensionalization of this
relation is performed with respect to the state of the gas in the quiescent (unshocked)
region.

The Prandtl number is assumed constant, Pr = 3/4, whereas the Nusselt number is
given by the following empirical correlation (Knudsen & Katz 1955),

Nu = 2 + 0.6 Pr1/3 Re1/2, (14)



Numerical simulation of detonations 101

where Re is the Reynolds number of the particles:

Re = ρg |us − ug| dp

µ
. (15)

Finally, the following empirical relationship has been used for the drag coefficient
cD (Rowe 1961),

cD =

{
1 + 0.15Re0.687, Re < 1000,

0.01833Re, Re � 1000.
(16)

Equations (7)–(8) form a hyperbolic system of conservation laws. The source terms
of (7) have opposite sign to the source terms of (8) and, therefore, the overall mass,
momentum and energy of the system are conserved. With the use of ρ̃g and p̃g , the
left-hand sides of (7) take the form of the left-hand side of the classical gasdynamic
Euler equations. This implies that coupling between the two phases comes via (4)
and the source terms only. As a result, the eigenvalues of (7) are the same as the
eigenvalues of the Euler equations. This has a direct implication in the design of
algorithms for the numerical solution of the system (7)–(8).

Further insight into the behaviour of the two-phase mixture can be obtained by
considering the limit case of thermal and mechanical equilibrium between the two
phases, i.e. when ug = us, Tg = Ts = T . Inserting these two conditions into the
governing system (7)–(8), it is found, after some straightforward algebra, that at
equilibrium the mixture behaves as a perfect gas with an effective specific-heat ratio
equal to

γeq =
cpρ̃g + csρ̃s

cvρ̃g + csρ̃s

. (17)

The speed of sound of the mixture at equilibrium is given by

c2
eq = γeq

p̃g

ρ̃g + ρ̃s

. (18)

It is worth observing that the equilibrium sound-speed satisfies the condition

0 <ceq � c, (19)

where c is the frozen speed of sound for the gas, i.e.

c =

(
∂pg

∂ρg

)1/2

s

, (20)

with s being the entropy of the gas. This implies that the equilibrium characteristic
speed lies between the extremal characteristics of the system (7)–(8). Further, the
equilibrium properties of the mixture are independent of the particle diameter. On
the other hand, (18) implies that the equilibrium sound speed monotonically decreases
with the particle volume fraction. In general, this is not correct. However, for small
and moderate particle concentrations (such as the those considered in the present
study) the equilibrium sound speed does drop monotonically with φs (see Kapila
et al. 2001).

Two-phase flow models with the same convective structure have been employed by
Eidelman & Yang (1986), and Saurel (1996). Other models for high-speed two-phase
reacting flows have also been proposed. Examples include the BN model of Baer
& Nunziato (1986), the models of Butler & Krier (1986), Powers, Stewart & Krier
(1990a), Bdzil et al. (1999), Saurel & Abgrall (1999), Saurel & Lemetayer (2001) and
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others. Simplified two-phase flow models that neglect the volume occupied by the
particles have been employed by Miura & Glass (1982), Loth et al. (1997) and others.

At this point, it would be useful to list the main assumptions of the model (7)–
(8). Further refinement of this model can be achieved by relaxing some of these
assumptions.

(i) The solid phase is modelled as a continuum.
(ii) The solid phase is assumed to be completely incompressible.
(iii) The effect of nozzling terms is negligible.
(iv) The model incorporates a simplified reaction model.
(v) The model employs simplified expressions for the momentum exchange and

heat transfer between the two phases. The temperature inside the particles is uniform
(heat transfer inside the particles is ignored).

The first assumption suggests that the validity of the model might become
questionable at very small particle volume fractions. Roughly speaking, the continuum
approximation holds as long as the number density of particles is sufficiently high
that it becomes impossible to single out individual particles in the mixture. However,
earlier studies and comparisons between experiments and numerical results indicate
that the continuum approximation can be valid even for very dilute mixtures (see
Ishii, Umeda & Yuhi 1989; Uphoff et al. 1995 and references therein).

The second assumption implies that the dynamic compaction equation that is
included in the flow models (Baer & Nunziato 1986; Bdzil et al. 1999; Saurel &
Lemetayer 2001), effectively becomes redundant. This equation is a convection
equation for the solid density ρs , with a source term that is proportional to the
difference between the gas pressure and the sum of the solid pressure and (an
estimate for) the intergranular stress. This source term is referred to as the ‘pressure
relaxation’ term and describes the microscale forces that act upon the particles. In
general, the solid particles are subject to microscale motion in order to achieve
pressure equilibrium between the two phases. However, when the solid substance is
incompressible, the solid particles become rigid bodies and their microscale motion
vanishes.

According to the third assumption, the effects of the nozzling terms are ignored.
These terms appear in the momentum and energy equation for each phase and
they have the form pi ∇ φs , and piui ∇ φs . In these expressions, pi and ui represent
interfacial pressure and velocity, respectively, and they are constructed in a non-
unique manner. Nozzling terms are non-conservative. As a result, the evolution of
gasdynamic discontinuities does not follow the classical jump conditions. Such terms
are included in some two-phase models (Baer & Nunziato 1996; Bdzil et al. 1999;
Saurel & Lemetayer 2001) and are excluded in others (Butler & Krier 1986; Powers
et al. 1990a).

Inclusion of nozzling terms ensures that the dynamic compaction models satisfy
the strong form of the second thermodynamic law which states that each individual
process that the mixture undergoes should be dissipative. Additionally, in two-phase
flow models where both phases are considered compressible, nozzling terms are
necessary in order to avoid velocity and pressure evolution from initial conditions of
uniform (and equal for both phases) velocity and pressure distributions (see discussion
in Saurel & Abgrall 1999). This argument, however, is not directly applicable in the
two-phase flow model presented above because this model assumes an incompressible
solid phase.

On the other hand, a number of arguments have been provided for excluding these
terms from the governing equations. More specifically, Gonthier & Powers (2000)
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mention that (i) only the weak form of the second thermodynamic law has to be
satisfied (the overall entropy of an isolated mixture has to be non-decreasing in time,
(ii) currently there is no microscale justification for either the inclusion or the exclusion
of nozzling terms (in other words, it has not yet been verified that these terms describe
actual physical phenomena), (iii) the effect of these terms is negligible in high-pressure
environments, and (iv) accurate estimates of the interfacial pressure and velocities are
quite often unavailable. Additionally, if the initial conditions contain interfaces across
which the particle volume fraction is discontinuous, then the nozzling terms become
infinite, thus imposing non-physical singularities on the governing equations. In the
present study, nozzling terms have been excluded mainly because in high-pressure
conditions (such as those encountered in detonation fronts), the role of these terms is
expected to diminish; see also the discussion in Bdzil et al. (1999). Besides, Gonthier
& Powers (2000) reported good agreement between numerical results obtained with
their model (that did not take nozzling into account) and experimental DDT data.

As far as the fourth assumption is concerned, we note that the one-step Arrhenius
kinetics law is quite often employed in the numerical simulations of reacting flows
(see, for example, Papalexandris, Leonard & Dimotakis 1997, and references therein).
It can reproduce some important features of detonations. On the other hand, there
are some restrictions and limitations in the applicability of this kinetics law because it
cannot provide a precise description of the thermochemistry of real-life detonations.
For example, it cannot capture certain phenomena associated with initiation (such as
chain-branching) or extinction of detonations.

The assumption that momentum exchange between the two phases occurs only via
drag is fairly standard in flow models for mixtures of gases and heavy particles.
The justification for neglecting the other hydrodynamic forces is the following
(Loth et al. 1997). Added mass effects are neglected owing to the large density
ratio of the two phases. Lift forces are neglected owing to low vorticity (outside
contact discontinuities). In fact, recent three-dimensional numerical simulations by
Tomboulides & Orzag (2000) show that lift forces in the Reynolds numbers of interest
are typically 15 times smaller than drag forces. Additionally, Basset and Faxen forces
are neglected because the scales associated with gas velocity gradients are much larger
than the particle size (outside discontinuities).

Finally, the assumption regarding temperature uniformity inside the particles is also
fairly standard in two-phase flow models. It is justifiable because of the small size
of the particles. However, for large particle diameters this assumption might not be
valid anymore. In those cases, the approaches of Fan & Sichel (1988) or Gonthier
et al. (1998) which take into account heat conduction inside particles, can be used.

3. Steady-wave solutions
In this section, we focus on the analysis of the one-dimensional steady-wave

structure. More specifically, we derive a set of four ordinary differential equations
(o.d.e.s), and four algebraic constraints that describe steady-state solutions (in the
frame attached to the leading front) of the two-phase flow model (7)–(8). These
equations can then be integrated numerically for the evaluation of the steady-wave
profiles. Such analysis provides a valuable method of algorithm validation. It is also
useful for gaining a better understanding of the relaxation processes occurring behind
the leading front and for identifying the various modes of two-phase detonation that
admit a steady-wave structure.
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The method that we employ in our analysis is standard. More specifically, we assume
that the solution to the flow model (7)–(8) is a steady one-dimensional detonation wave
propagating with speed D. Then, the governing equations are written in a coordinate
frame attached to the wave, by using the transformation of coordinates ξ = x − Dt ,
and velocities wi = ui −D, where i = g, s. After some straightforward calculations, the
conservation equations for the gaseous reactant mass fraction variable, and particle
mass, momentum and energy yield

dρ̃gzwg

dξ
= R, (21a)

dρ̃sws

dξ
= −Γ, (21b)

dws

dξ
= − F

ρ̃sws

, (21c)

dTs

dξ
= − Q

cs ρ̃s ws

, (21d)

respectively. For the calculation of the gas flow variables, we can employ the
conservation equations for the mixture. In the steady-wave frame of reference, these
equations are transformed to algebraic equations. Similarly, (8d) for the conservation
of particle number density yields an algebraic equation for the particle diameter
because it is source-free. The final result is

ρ̃gwg + ρ̃sws = C1, (22a)

ρ̃gw
2
g + ρ̃gTg + ρ̃sw

2
s = C2, (22b)

ρ̃gwg(eg + ρ̃gTg) + ρ̃swses = C3, (22c)

ρ̃sws

d3
p

= C4. (22d)

The values of the constants Ci, i = 1, 2, 3, 4, are evaluated by direct substitution of
the initial conditions to the left-hand side of the above equations. The above system
is everywhere regular except at points where ρ̃s = 0 or ws = 0. These singularities can
be removed by using the o.d.e.s that describe conservation of solid phase momentum
and energy as opposed to o.d.e.s for primitive variables. Upon integration, the above
system yields positive values of ρ̃s and Ts , and negative values of ws and ρ̃g wg z.
After each integration step, the algebraic conditions (22) can be employed for the
evaluation of the gaseous phase variables.

For the problem under consideration, initial conditions are the post-shock values
of the flow variables. Let the subscript ‘in’ denote the initial post-shock state, and
the subscript ‘0’ denote the condition of the mixture in the quiescent pre-shock state.
The solid phase equations do not admit discontinuous solutions except for contact
surfaces. Therefore,

(ρ̃s, ws, Ts, dp)in = (ρ̃s, ws, Ts, dp)0, (23)

where (ws)0 = −D. For the evaluation of the initial values of the gas flow variables,
we can employ the standard gasdynamic jump relations, i.e.

(ρ̃gwg)in = (ρ̃gwg)0, (24a)(
ρ̃gw

2
g + ρ̃gTg

)
in

=
(
ρ̃gw

2
g + ρ̃gTg

)
0
, (24b)(

cpTg + 0.5w2
g

)
in

=
(
cpTg + 0.5w2

g

)
0
, (24c)
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zin = z0 = 1. (24d)

The end-state conditions are those of completion of the reaction processes:

at ξ → −∞ : z = 0, ρ̃s = 0. (25)

For a detailed analysis of the end-state, see Powers et al. (1990b). We observe that at
neither ξ = 0 nor ξ = −∞ is there a complete set of boundary conditions. At the
origin, the value of (ws)0 is unknown (because D is unknown), and at infinity, there
are no explicit relations for the velocities and the temperatures. Therefore, probably
the easiest way to solve this problem numerically is to select a value for the wave
speed D, numerically integrate the system from 0 up to a large negative value of
ξ , and then check if the end-state conditions (25) are satisfied. If they are, then the
computed profiles for the flow variables, together with the value of D, constitute an
admissible steady-wave solution. If this strategy is followed, then combining (23) with
the following definitions,

C4 = C1 − ρ̃sws, (26a)

C5 = C2 − ρ̃sw
2
s , (26b)

C6 =
C3 −

(
csTs + 0.5w2

s + q2

)
ρ̃sws

C4

− q1z, (26c)

leads to a second-order equation for ws ,

2cp − 1

2cp

w2
s − C5

C4

ws +
C6

cp

= 0. (27)

Once the gas velocity has been calculated by solving the above equation, the
thermodynamic variables of the gas can be computed directly by solving the
algebraic equations (22). Equation (27) can also be employed for the derivation
of parametric conditions for admissible steady-wave solutions. This is beyond the
scope of the present study since the main motivation for steady-wave analysis is
algorithm validation and checks of the accuracy of numerical results. Nonetheless, it
has been numerically verified that for a wide range of physical parameters and initial
conditions, the above equation possesses two real-valued solutions of which only one
is physically admissible.

A steady-wave solution belonging to the class of single-front detonations has been
obtained with the parameters and initial conditions that correspond to case A of
§ 5 below. Profiles of the flow variables for this case are plotted in figure 1. It can
be verified that, owing to the high post-shock temperature, both gaseous and solid
reactants begin to burn behind the leading front. The burning rate of particles is
noticeably high and, as a result, the detonation is supported by the heat release from
both reactions. The gaseous reaction rate, though, is much higher than that of the
particle burning. Consequently, the gaseous reaction reaches completion much earlier
than the completion of the processes of particle burning and temperature and velocity
relaxation.

Steady-wave solutions of the second mode, the pseudo-gas detonation, could not
be predicted. However, unsteady pseudo-gas detonations have been observed in some
of our numerical simulations. The structure of these flows is similar to the structure
of detonations in mixtures with inert particles. The leading front is supported by
the heat of the gaseous reaction only. Behind the front, a long compaction zone is
formed, inside which the particles burn very slowly. The propagation velocity of the
tail of this zone is lower than that of the leading front. Therefore, the length of the
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Figure 1. Profiles of flow quantities for a steady single-front detonation. Continuous lines
correspond to gas variables, and dashed lines correspond to solid-phase variables.

compaction zone increases with time, thus prohibiting the establishment of a flow
field in the form of a single travelling wave.

For the same reason (different propagation velocities of the leading front and
the tail of the compaction zone), it was impossible to identify parameter values for
detonations in mixtures with inert particles that resulted in flow fields consisting of
a single steady wave. Nonetheless, parameter values that resulted in the formation of
two steady wavefronts have been numerically identified. These fronts are the leading
detonation wave and the tail of the compaction zone. In other words, the detonation
wave and the tail of the compaction zone have constant but unequal velocities. This
implies that the length of the compaction zone increases at a constant rate. An
example of such case is Case A for inert particles described in § 5.3.

Finally, steady-wave solutions of the third mode, the pseudo-gas detonation, cannot
be calculated without additional information of the strength and location of the
secondary shock. Currently, it is not well understood which conditions or which
particles can actually lead to the development of such a structure. For example, the
simulations of Uphoff et al. (1995) for mixtures with aluminium particles indicate that
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a steady double-front structure is indeed possible. On the other hand, the simulations
of Veyssiere et al. (1999) suggest that such a structure is not possible for mixtures
containing starch particles. Our simulations showed that secondary discontinuities
can indeed develop owing to the delay in the heat release from the two reactions, but
they propagate at speeds substantially different from those of the leading front. As a
result, they eventually decay or overtake the leading front.

4. Description of the numerical method
The algorithm employed in this study for the solution of the governing system

(7)–(8) is based on the methodology proposed by Papalexandris et al. (2002) for
multidimensional systems of hyperbolic conservation laws with source terms. It is
a high-order unsplit shock-capturing algorithm. Its design follows the spirit of the
original MUSCL scheme of van Leer (1979). All terms of the governing equations are
integrated simultaneously (in a single time step), thus avoiding dimensional or time
splitting.

The algorithm performs the following four basic steps to advance the solution from
t = n�t to t = (n + 1)�t .

(i) Primitive flow variables are assumed to vary linearly inside each computational
cell. Their spatial derivatives are computed using a slope limiter. In the present
implementation of the scheme, van Albada’s limiter has been employed (van Leer
1979).

(ii) Predictions for the flow variables on the cell interfaces at t = (n + 1/2)�t are
obtained by tracing appropriate curves in the three-dimensional Euclidean space–time.

(iii) In order to take care of discontinuities, the predicted values from step (ii) are
used as initial conditions for the Riemann problem of the system (7)–(8). The solution
to this Riemann problem yields the final estimates for the flow variables on the cell
interfaces at t = (n + 1/2)�t .

(iv) The fluxes at the interfaces are computed from the solution of the Riemann
problem and the conservation laws are integrated via a finite-volume scheme.

To fix ideas, consider a hyperbolic conservation law with a source term written in
integral form,

d

dt

∫
V

σ dV +

∫
S

w(σ ) · dS =

∫
V

ψ dV. (28)

In (28), σ is the unknown variable, w is the flux and ψ is the source term. The
finite-volume scheme applied to the (i, j )th cell of an unstructured grid, reads

(σi,j )
n+1 = (σi,j )

n +
�t �Sij

�Lij

[
(lψ)n+1/2

i+1/2,j + (lψ)n+1/2
i−1/2,j + (lψ)n+1/2

i,j+1/2 + (lψ)n+1/2
i,j−1/2

]
− �t

[
(l nc · w)n+1/2

i+1/2,j − (l nc · w)n+1/2
i−1/2,j +(l nc · w)n+1/2

i,j+1/2 − (l nc · w)n+1/2
i,j−1/2

]
, (29)

where l is the length of the particular interface, �Sij and �Lij are the area and
perimeter, respectively, of the (i, j )th cell, and nc is the unit vector normal to the
interface. The values of the fluxes and the source term are computed via the procedure
outlined in steps (ii) and (iii). These steps are described in some detail below.

Step (ii) is reminiscent of the characteristic ray-tracing for the one-dimensional
gasdynamic Euler equations. According to the classical characteristic theory for
hyperbolic conservation laws, the corresponding homogeneous one-dimensional
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system can be decomposed into a set of o.d.e.s, dfi/dt = 0, i =1, . . . , 8, so that
each o.d.e. holds along the corresponding characteristic path. In other words, the
decomposition reads

dfi

dt
= 0 along

dx

dt
= λi (i = 1, . . . , 8), (30)

where λi are the eigenvalues of the one-dimensional analogue of (7)–(8), and they are
given by

λ1 = ug, λ2,3 = ug ±
√

γpg/ρg, λ4 = λ1, λ6−8 = us. (31)

Next, ten new quantities, ûi , having dimensions of velocity are introduced such that
the system (7)–(8) can be decomposed into a set of o.d.e.s, dfi/dt = 0, i = 1, . . . , 10.
This set consists of the eight o.d.e.s in (30), plus two additional o.d.e.s for the tangential
velocity components.

Each of the ten o.d.e.s holds along the path dxi/dt = λi + ûi , where λi are the
two-dimensional extensions of λi , i.e.

λ1 = ug, λ2,3 = ug ±
√

γpg/ρg n, λ4,5 = λ1, λ6−10 = us, (32)

with n being an arbitrary but fixed spatial unit vector.
In other words, ten new convective velocities, ûi , are defined so that the system

(7)–(8) can be decomposed into

dfi

dt
= 0 along

dx
dt

= λi + ûi (i = 1, . . . , 10). (33)

The ten o.d.e.s are

df1

dt
=

dp̃g

dt
− γ p̃g

ρ̃g

dρ̃g

dt
= 0, (34a)

df2

dt
=

dp̃g

dt
+

√
γ ρ̃gp̃g n · dug

dt
= 0, (34b)

df3

dt
=

dp̃g

dt
−

√
γ ρ̃gp̃g n · dug

dt
= 0, (34c)

df4

dt
=

d(ug · n⊥)

dt
= 0, (34d)

df5

dt
=

dz

dt
= 0, (34e)

dfi

dt
=

dωi

dt
= 0 (i = 6, . . . , 10), (34f)

where ω ∈ {φs, us, vs, Ts, Ns}. In (34c), n⊥ is the unit vector normal to n.
Each of these o.d.e.s defines a manifold in the Euclidean space–time. A different

choice of ûi corresponds to a different path along the manifold defined by the ith
o.d.e. Therefore, for each o.d.e. given in (34), there is an one-parameter family of
convective velocities ûi(i = 1, . . . , 10) that allows the decomposition (33) to be valid.
Carrying on with the analysis, we find that each of these convective velocities has to
satisfy an inner-product relationship in order for (34) to be valid. Therefore, these
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inner-product relationships (which are not presented here for the sake of brevity)
can be viewed as both compatibility conditions for the proposed decomposition,
and as defining relations for ûi(i = 1, . . . , 10). For more details, see Papalexandris
et al. (2002).

For computational purposes, one curve from each of the 10 manifolds must be
selected. In the present implementation of the algorithm, the selected curves are
those for which the norms of the convective velocities |ûi |(i = 1, . . . , 10), attain
a minimum. The list of selected convective velocities is given in the Appendix.
Other choices, however, are also possible. Once the curves along the manifolds have
been selected, each o.d.e. is integrated numerically up to t = (n + 1/2)�t along
its corresponding curve. For numerical purposes, these curves are approximated by
straight-line segments.

The third step of the algorithm consists of solving the one-dimensional Riemann
problem for the system (7)–(8) with initial data provided by the solution of the o.d.e.s
(34) along their corresponding manifolds. Since coupling between the two phases
comes from the source terms only, cf. (7)–(8), it is possible to solve two separate
single-phase Riemann problems: one for the gaseous phase and the other one for the
solid phase. Probably the most robust implementation is to solve the two single-phase
Riemann problems in the direction normal to the cell interface. Nonetheless, other
possible directions are also allowed by the algorithm.

For the gaseous phase, the algorithm computes the solution to the classical
gasdynamic Riemann problem with the modification that pg and ρg have been
substituted by p̃g and ρ̃g , respectively. In other words, in the Riemann solver for the
gaseous phase, the pressure and density have been replaced by the partial pressure
and density. It should be pointed out that in the presence of source terms, the
Riemann problem is not self-similar like the classical gasdynamic Riemann problem.
Nonlinear waves are not straight lines on the (x, t)-plane because they do not move at
constant speeds anymore. Yet, the solution of the Riemann problem for reacting flows
converges to the solution of the classical Riemann problem as x, t → 0. Therefore,
for computational purposes, we can safely use the solution of the classical Riemann
problem.

As far as the solid phase is concerned, we observe that equations (8) form a
degenerate system of hyperbolic conservation laws. In fact, the system possesses only
one distinct eigenvalue (with triple multiplicity), λ= us . Additionally, the gradient of
the eigenvalue in phase-space is normal to the eigenvector. This implies that only
contact discontinuities are permissible for the solid phase; shock waves cannot be
formed. The contact discontinuities move with the characteristic speed, which is the
solid-phase velocity.

Therefore, the Riemann problem for the solid phase is trivial. This means that for
computational purposes the use of a solid-phase Riemann solver can be avoided.
Indeed, numerical experiments showed that computing the fluxes at the interfaces
using the solution of the o.d.e.s, (34), without any Riemann-solver correction is an
accurate and robust procedure. A Riemann solver for incompressible solid phase
equations similar to (8) has been proposed by Saurel, Daniel & Loraud (1994).
More specifically, they considered six possible initial conditions, depending on the
direction and magnitude of the velocity vector of the solid particles on each side
of the discontinuity. For each initial condition, they presented a simple solution for
the evolution of the discontinuity. When we attempted to incorporate this Riemann
solver into the present scheme, we did not observe any improvement on the results.
Therefore, this idea was not pursued further.
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It is worth mentioning that the proposed decomposition (33) for the system (7)–
(8) that was outlined above is mathematically exact and quite general. Therefore, it
can be applied to an arbitrary system of multidimensional hyperbolic conservation
laws. Examples include two-phase flow models that take into account particle
compressibility and particle–particle interactions. Extension of the algorithm to flows
with compressible particles would require an equation of state and a Riemann solver
for the solid phase.

Code validation has been performed with various tests. As a first test, the code was
used to simulate one-dimensional and two-dimensional purely gaseous detonations.
The results obtained from these simulations were exactly the same as those reported
in Papalexandris et al. (1997, 2002). As a second test, we performed simulations of
the dusty shock-tube problem (Miura & Glass 1982). This is an inert two-phase-
flow problem; the driver section of a shock tube initially contains pure gas, while
the driven section contains a cloud of particles. A shock wave is formed after the
burst of the diaphragm which propagates into the driven section. Our results were
sufficiently close to those of Miura & Glass (1982). More specifically, the difference
in the predicted shock speeds was 2.5 %, while the difference in the velocities of the
contact discontinuities was approximately 4 %. Such differences are deemed small if
we take into account that in the flow model of Miura & Glass (1982), the volume
occupied by the particles was neglected and that the expressions for the momentum
and energy exchanges between the two phases were slightly different.

As a third test, we computed some cases with reactive solid particles for which
steady-wave solutions exist. The agreement between the steady-wave profiles and the
numerically computed solutions was very satisfactory. Finally, a series of convergence
studies was conducted to test the accuracy of the algorithm. Some results of these
studies are presented below.

5. Numerical results for one-dimensional detonations
In this section, we present results from simulations of one-dimensional detonations

in mixtures of gases and particles. The section is organized as follows. First, the
physical parameters are selected and a length-scale analysis is presented. This analysis
facilitates the estimation of the required spatial resolution for the problems of interest.
Next, results for three representative cases for mixtures with reactive particles are
presented. These cases correspond to different choices for the values of particle
volume fraction and particle diameter in the quiescent medium, denoted by φs0

and dp , respectively. We have avoided cases with φs0 so small that the continuum
assumption for the solid phase could become questionable. Further, results for the
same three cases but for mixtures with inert particles are presented. A discussion
on the structural characteristics of the predicted flow fields and the mechanisms
that created them accompanies the presentation of the numerical results. Finally, we
present the results of parametric studies that we conducted in order to explore the
role of certain physical parameters on the propagation and stability of two-phase
detonations.

5.1. Parameter selection and length-scale analysis

The steady-state Zeldovich–von Neumann–Doering (ZND) profile of a purely gaseous
detonation is used as the initial condition. Linear stability analysis (Erpenbeck 1964;
Lee & Stewart 1990), has shown that ZND waves are stable at high overdrives, but
become increasingly unstable as the overdrive decreases. In fact, numerical results
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for ZND detonations at low overdrives (near unity) show that the governing system
possesses the typical characteristics of chaotic systems with a small number of degrees
of freedom (Papalexandris et al. 1997).

The numerical simulations are set up as follows. The ZND wave is placed near the
left boundary and is allowed to propagate downstream, toward the quiescent two-
phase mixture. The quiescent mixture is assume to be uniform, i.e. the distribution
of the particle volume fraction is assumed constant. Inflow conditions (constant flow
variables) have been imposed on the left boundary, while outflow conditions (zero
normal gradients of the flow variables) have been imposed on the right boundary.

The half-reaction length of the ZND wave, L1/2 is defined as the characteristic
length scale. This choice is made for two reasons. First, L1/2 is commonly used as the
unit length in studies of gaseous detonations. Secondly, for the physical parameters
of interest, L1/2 is the smallest length scale of the problem (typically, L1/2 is at the
order of 1 cm). The characteristic length scale divided by the sound speed ahead of
the shock provides the characteristic time scale, t1/2.

Pressure, density and temperature are non-dimensionalized by the values of the
gaseous pressure, p0, density, ρ0, and temperature, T0, ahead of the shock. It should
also be clarified that, throughout the paper, Mach number calculations were based
on the frozen sound speed of the gas (

√
γp0/ρ0), and were performed with respect to

the laboratory frame of reference and not with respect to a shock-attached frame.
In the present study, the specific heat ratio is γ = 1.2, and the reaction parameters

have been set to

K1 = 230.75, q1 = 50, Ea = 50. (35)

Further, the specific heat and density of the solid phase are set at

cs = 4, ρs = 2500. (36)

The reaction parameters correspond to a ZND wave of overdrive factor f = 1.6. The
overdrive factor is defined as f = D2/D2

CJ, where D is the velocity of the detonation
wave and DCJ is the velocity of the equivalent Chapman–Jouguet detonation.
According to linear stability analysis (Lee & Stewart 1990), this detonation has one
unstable mode, i.e. the shock pressure oscillates periodically in time. The evolution
of this detonation has been studied numerically by many authors in the past (see,
for example, Bourlioux, Majda & Roytburd 1991; Papalexandris et al. 1997; Hwang
et al. 2000, and references therein), so that it can be considered a well-documented
case. Therefore, it can serve as a reference case in order to compare the structure and
propagation characteristics of two-phase detonations with those of purely gaseous
ones.

Next we show that, for the above choice of reaction parameters, L1/2 is the smallest
characteristic length of the flow. In the problem under consideration, there are three
additional characteristic lengths besides L1/2. The second characteristic length is the
momentum relaxation length Lu, i.e. the distance between the leading front and the
point where velocity equilibrium is attained. It is given by Lu = uref tu, where tu is
the momentum relaxation time and uref is a reference velocity that corresponds to a
time-averaged difference of ug and us . It is directly deduced from (10) that

tu =
ρs d2

p

18 µ cD

, (37)
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where cD > 1, cf. (16), and µ > 1.71 × 10−5, cf. (13). The smallest particle diameter
that has been considered in the present study is dp = 0.0005 L1/2. This implies that

tu � 2 t1/2. (38)

In turn, this suggests that even if we assume uref to be as low as the speed of sound
ahead of the precursor shock,

√
γp0/ρ0, the following inequality is valid,

Lu > 2L1/2. (39)

The third characteristic length of the problem is the length required for thermal
equilibrium, LT . It is given by LT = uref tT , where tT is the thermal relaxation time.
From (11), it is deduced that

tT =
ρs d2

p cs Pr

6 µ cp Nu
. (40)

Equation (40) combined with (37) yields

tT =
3 cs cD Pr

cp Nu
tu. (41)

With the selected values for cs , cp and Pr , we conclude that

tT � tu ⇒ LT � Lu. (42)

The fourth characteristic length is the distance that a particle has travelled until it
burns completely, Lb. It can be estimated by Lb = us tb, where tb is the particle life
time and us is the average particle velocity. Substituting this average velocity in (8a)
and (8d) and combining (4) yields

dd2
p

dt
= − K2

3
, (43)

which upon integration gives

tb =
3d2

p

K2

. (44)

In the present study, the non-dimensionalized value of K2 was set at K2 = 2 × 10−7,
whereas the smallest particle diameter considered was dp = 5 × 10−4. Therefore, we
conclude that, for the cases examined herein, tb � 3.25 t1/2. This implies that the
particles burn at least 3.25 times slower than the gas (in fact they burn much slower).
In turn, this means that even if we assume particle velocities as low as the speed of
sound in the quiescent medium, the following inequality is valid

Lb � 3.25L1/2. (45)

From the inequalities (38), (41) and (44), we deduce that L1/2 is the smallest
characteristic length of the problem. In other words, the Arrhenius kinetics law
is the stiffest term among all source terms of the governing system (7)–(8). Therefore,
for grid selection purposes, we can rest assured that all length scales are well resolved
if the (gaseous) reaction zone is well resolved. In the present study, the grid resolution
was set at 20 points per L1/2, unless otherwise noted.
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5.2. Mixtures with reactive particles

The parameters for the particle burning are ,

Tign = 4, K2 = 2 × 10−7, q2 = 67. (46)

These values are very close to those used by Khaisanov & Veyssiere (1996) in their
reaction model.

Case A. In this case, the initial particle volume fraction, φs0, and the initial particle
diameter, dp0, are

φs0 = 0.0004, dp0 = 0.001. (47)

This initial condition results in the establishment of a steady wave; the numerical
results show that the propagation velocities of the front and the reaction zones remain
constant with time. More specifically, this is a case of a single-front detonation because
it is supported by energy release from both gaseous and solid-phase reactions.

Once the leading front encounters the two-phase mixture, part of the front reflects
back and propagates upstream, while the other part keeps propagating downstream
through the mixture. Therefore, the precursor shock of the detonation wave has less
strength than that of the ZND detonation. This implies lower shock pressure and
temperature, as well as lower detonation velocities. For this particular case, the drop
in detonation velocity is approximately 9%. The particle Reynolds number, equation
(15), attains a maximum value immediately behind the leading shock; max Re � 700.

Plots of various flow variables at t = 200 t1/2 are shown in figure 2. The plotted
variables are: gas pressure pg and temperature Tg , Mach number (for the gaseous
phase) in the laboratory coordinate frame, reactant mass fraction z, and solid volume
fraction φs . These plots show that the particle volume fraction increases inside
the thin gaseous reaction region, right behind the leading front. When the particle
temperature Ts reaches the ignition temperature Tign, the particles begin to burn, thus
their concentration is reduced. However, the rate of particle burning is much slower
than that of the gaseous reaction. As a result, their reaction zone extends over a large
region, approximately 25 L1/2.

It is also worth mentioning that both the equivalent case of a purely gaseous
detonation and the equivalent case with inert particles (which is described below)
result in pulsating detonations. The instabilities observed in those detonations are the
result of coupling between entropy waves and heat release governed by Arrhenius
reaction kinetics. The suppression of the instability in the present example is due
to the introduction of an additional reaction (particle burning) that does not follow
Arrhenius kinetics. Therefore, addition of reactive particles in a combustible gas
suppresses the instabilities of the detonation front, but reduces its propagation velocity
(with respect to the velocity of the corresponding purely gaseous detonation).

The accuracy of the simulation is first checked via comparisons with the steady-wave
profiles computed via numerical solution of the system (21)–(22). The percentage error
in the computation of the flow variables is plotted in figure 3. Overall, the accuracy of
the simulation is quite satisfactory; for example, the maximum computational error
in Tg was 0.7 %. The error peaks right behind the leading front and then decreases
rapidly. This is typical of shock-capturing schemes; the error peak behind the leading
front is due to the additional artificial dissipation that is required near discontinuities
for the stability of the computation.

A grid-convergence study for this case has also been performed. Numerical
convergence is tested via two quantities, namely, the average wave speed, Dav, and a
discrete version of the L1 norm of the error in the prediction of the pressure. The
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Figure 2. Case A, reactive particles. Spatial profiles of flow variables at t = 200 t1/2.

average wave speed is a global quantity of detonating flows commonly used as a
measure of the accuracy of simulations. In fact, studies have shown that in under-
resolved simulations, the errors in the average wave speed can be very large (see
Bourlioux et al. 1991 and references therein). The variation of the predicted average
wave speed (up to time t = 80t1/2) with the grid resolution is shown in the first part
of figure 4. It can be verified that the differences between successive approximations
decay rapidly as the grid is refined.
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Figure 3. Case A, reactive particles. Percentage error of the numerical results. (a) Gas
pressure. (b) Gas temperature. (c) Gas velocity. (d) Particle volume concentration.

The L1 norm of the numerical error is also frequently used as an indicator of
numerical accuracy (see Gonthier & Powers 2000). It is defined as

EN(t) =
1

N

N∑
j=1

|pj (t) − p̂j (t)|, (48)

where N is the number of computational cells of the domain, and pj and p̂j are the
computed and exact values of the pressure, respectively, non-dimensionalized by p0.
Values of p̂j are calculated by solving the steady-wave equations (21) and (22). In the
present study, instead of measuring the error over the entire computational domain,
we measured it over a subdomain that covers 60 half-reaction lengths, starting just
in front of the leading front. In other words, we have excluded the area of quiescent
mixture ahead of the front and the area far behind the leading front where the
flow quantities remain constant. Results of the numerical error at t = 80 t1/2 are
plotted in figure 4(a). For resolutions of up to 20 points/L1/2 the convergence rate
is almost constant and equal to, approximately, 1.89. At higher resolutions, however,
the convergence rate is decreased. This is not surprising because diffusive errors due
to shock capturing do not scale with resolution. (On the contrary, numerical errors in
smooth parts of the flow do scale with resolution). Therefore, the relative importance
of shock-capturing errors increases as the grid is refined.
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Figure 4. Grid convergence study for Case A with reactive particles.

Case B. In this case, the particle volume fraction of the mixture ahead of the shock
is increased, whereas the initial particle diameter has been kept the same,

φs0 = 0.001, dp0 = 0.001. (49)

As in the previous case, a steady single-front detonation wave is established. Spatial
profiles of flow variables for this case are plotted in figure 5. In general, the resulting
detonation structure is very similar to that observed in Case A. The only differences
are in the detonation speed and the length of the particle burning zone: higher
particle volume fractions result in lower speeds and longer reaction zones. Another
important characteristic of this case is that the gaseous flow becomes sonic (in the
inertial frame of reference) at the end of the particle burning zone. At this location,
both reactions are completed and, therefore, the sound speed equals the frozen sound
speed

√
γp0/ρ0. As mentioned above, the establishment of a stable detonation front

is due to the reactivity of the solid particles. Error analysis and grid convergence tests
have also been performed for this case, yielding results similar to those for Case A.

Case C. In this case, we considered larger particle diameters,

φs0 = 0.001, dp0 = 0.005. (50)

The Reynolds number of the particles behind the shock is, approximately, Re � 3500.
Pressure profiles at various times are shown in figure 6, and profiles of the various flow
variables at t = 200 t1/2 are shown in figure 7. These results confirm the establishment
of a single-front detonation. As in Cases A and B, the gaseous reaction takes place
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Figure 5. Case B, reactive particles. Spatial profiles of flow variables at t = 200 t1/2.

inside a thin region that is attached to the leading shock. At the same time, part of
the energy that is released from the gaseous reaction is transferred to the particles.
In turn, the particle temperature Ts increases rapidly and becomes higher than Tign,
triggering the burning of the particles. This reaction, however, does not progress as
fast as the gaseous reaction and, as a result, the particle compaction zone extends
over a large distance in the wake of the leading front.

A detailed study of some important physical parameters of the flow has also been
performed and is described herein. We begin with the effect of the particle reactivity,
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i.e. the value of the time constant K2 of the particle burning law. Our simulations
predicted that the detonation velocity increases with the particle reactivity. Results
from our parametric study on particle reactivity are plotted in figure 8 (initial
conditions and constants taken from Case A). This figure contains plots of the
average wave speed (up to t = 80 t1/2), and the maximum value of φs as functions of
K2. These plots indicate that these two quantities depend monotonically on K2, but it
also appears that they both have an asymptotic limit. This would imply that increases
of the particle reactivity beyond a critical value will have no significant effect on the
detonation velocity.

The role of the mixture’s particle volume fraction, φs0 is discussed next. The
dependence of the average wave speed on φs0 is monotonic and is plotted in
figure 9. As the particle volume fraction φs0 increases, the shock speed drops.
Furthermore, it was predicted that sufficiently high particle volume fractions can
cause detonation quenching regardless of the particle reactivity. This is explained as
follows. For the particle burning to begin, the solid phase temperature Ts must reach
a certain threshold. For sufficiently high particle concentrations, a substantial amount
of momentum and energy transfer from the gas to the particles has already taken
place by the time the solid phase temperature reaches that threshold. This causes a
dramatic drop in the strength of the leading front and in the detonation velocity.

The effect of the initial particle diameter, dp0, has also been examined numerically.
The dependence of the average wave speed on dp0 for various values of φs0 is plotted
in figure 10. These plots suggest that as dp0 drops, the detonation velocity increases.
This is explained by the fact that the rate of particle burning is inversely proportional
to the second power of dp0, cf. (12). Further, we note that the effect on wave speed is
more pronounced at high φs0. For example, the rate �Dav/�dp0 increases rapidly for
dp0 < 0.001.
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Figure 7. Case C, reactive particles. Spatial profiles of flow variables at t = 200 t1/2.

Finally, a set of numerical simulations with different overdrive factors for the initial
ZND wave has also been conducted. More specifically, we considered ZND waves at
overdrives of f = 1.3 and f = 1.1. It was predicted that adding reactive particles to
a detonatable gas decreases always the detonation velocities. It was further predicted
that the percentage of the velocity decrease is higher in the regime of low overdrives.
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5.3. Mixtures with inert particles

This subsection contains numerical results for two-phase detonations with inert
particles. The same cases as in the previous subsection have been chosen; the only
difference is that the particle burning rate is now set to zero, i.e. K2 = 0, q2 = 0. Owing
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to the non-reactivity and incompressibility of the particles, the particle diameter
remains constant: dp = dp0 at all times.

Case A (φs0 = 0.0004, dp0 = 0.001). Profiles of the gas pressure at various times are
plotted in figure 11. The plots show that the detonation wave is periodic (the shock
pressure oscillates with time). In other words, this is a case of a pulsating detonation
just like the equivalent purely gaseous detonation. It can also be verified that the
post-shock pressure is considerably lower than in the equivalent case with reactive
particles, implying lower detonation velocities. More specifically, the decrease of
the detonation velocity is of the order of 25% (with respect to the case with reactive
particles).

Plots of various flow variables at t = 200 t1/2 are shown in figure 12. These plots
show that although the leading front has less strength, the shock temperature is still
high enough to initiate rapid burning of the gas in a thin region immediately after
the leading front. The gaseous flow remains supersonic in the entire area behind the
shock. The (initially at rest) solid particles are being accelerated by the leading shock
as it propagates through the mixture. In a sense, the particles are been ‘pulled’ by the
shock, thus resulting in the formation of a compaction zone whose length increases
with time. The numerical results suggest that the large values of the solid volume
fraction inside the compaction zone can be related to increases of the gas density
inside this region. In other words, the ratio of φs inside the compaction zone to φs0

is very similar to the ratio of ρg inside this zone to ρ0. This is consistent with solid
particles that are nearly acting as tracers, i.e. they have a very fast response time and,
therefore, their concentration scales with the density of the surrounding fluid.

To further explore the capabilities and limitations of the proposed algorithm, a grid-
convergence study was also performed for this case.The variation of the average wave
speed, Dav (up to time t = 80 t1/2), with the grid resolution is plotted in figure 13. It
can be verified that the differences between successive approximations decay rapidly
as the grid is refined. Examination of the profiles of the flow quantities obtained
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Figure 11. Case A, inert particles. Spatial profiles of gas pressure at various times,
(a) t = 20, 40, 60, 80, 100, (b) t = 120, 140, 160, 180, 200.

with grid sizes in the range of 10–80 points/L1/2 showed that the only observable
difference is at the prediction for the spike of the particle volume fraction at the
tail of the compaction zone (cf. figure 12). This difference might simply indicate that
higher resolutions are required at this region of the flow. The possibility, however,
that this spike is a numerical artefact cannot be excluded. For example, it might be a
by-product of the smearing of the initial discontinuity on the particle volume fraction.
Nonetheless, differences between predictions with successive grid refinement for the
value of this spike are becoming smaller as time increases. We also note that this
spike has no effect on the evolution of the detonation wave because its distance from
both the leading front and the reaction zone increases with time.

Case B (φs0 = 0.001, dp = 0.001). Profiles of the gas pressure at various times are
plotted in figure 14, while profiles of the flows variables at t = 200 t1/2 are shown in
figure 15. The increase in a φs0 results in a further reduction of the shock strength.
The shock temperature is not high enough to initiate rapid gas burning as in Case
A. Instead, a long induction region, is formed behind the leading front. Inside this
region, the gas burns slowly, resulting in a slow increase in temperature. When the
gaseous temperature eventually becomes high enough, a thin zone of rapid burning
is established.
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Figure 12. Case A, inert particles. Spatial profiles of flow variables at t = 200 t1/2.

Another difference from the previous case is that there is little spatial variation of
the pressure field behind the shock. Further, the shock pressure does not oscillate
with time, but remains constant, implying that the shock speed is also constant.
The velocity of the rapid-burning zone is also constant, but lower than the shock
speed. Therefore, the distance between the leading front and the rapid-reaction zone
increases at a constant rate. In other words, this detonation quenches. The velocity
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Figure 14. Case B, inert particles. Spatial profiles of gas pressure at various times,
t = 20, 40, 60, . . . , 200.

of the tail of the compaction is also constant, albeit lower than the velocity of the
rapid-burning zone.

It is worth mentioning that the gaseous flow is supersonic everywhere behind the
leading front. Numerical experiments showed that if the flow at the end of the reaction
zone is supersonic, then this zone is always located ahead of the tail of the compaction
zone, even if the detonation quenches. Further, when this condition holds, the particle
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Figure 15. Case B, inert particles. Spatial profiles of flow variables at t = 200 t1/2.

volume fraction inside the compaction zone does not increase with time. On the other
hand, if the flow at the end of the reaction zone is subsonic, then this zone becomes a
deflagration propagating at speeds lower than those of the compaction zone. In such
cases, φs monotonically increases with time.

Case C (φs0 = 0.001, dp = 0.005). Results for the pressure at various times are
plotted in figure 16, while results for various flow variables at t = 200 t1/2 are
plotted in figure 17. These plots show that the structure of this detonation is very
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Figure 16. Case C, inert particles. Spatial profiles of gas pressure at various times,
(a) t = 20, 40, 60, 100, (b) t = 120, 140, 160, 180, 200.

similar to those of purely gaseous detonations at low overdrive factors (Papalexandris
et al. 1997). In particular, there is formation of pockets of unreacted material, as well
as formation of secondary shock waves behind the leading front.

The temperature behind the shock, figure 17, is not high enough to sustain a rapid-
burning zone. On the other hand, the increased value of the particle diameter implies
smaller surface area (under constant φs0) of the solid phase, hence smaller momentum
and energy losses for the gas. This has two consequences. First, it does not allow the
formation of a long induction zone and quenching of detonation. Instead, it results
in the formation of pockets of unreacted material behind the leading front. Secondly,
it prohibits high particle volume fractions in the compaction zone behind the front;
the values of φs remain at levels close to φs0.

Inside the pockets of partially unreacted gas, the reaction progresses slowly owing
to relatively low temperature. Once the temperature becomes high enough, the
reaction rate is increased, resulting in an explosion. Two shock waves moving in
opposite directions are generated by this explosion. The shock wave that propagates
downstream eventually overtakes the leading front. The strength of these secondary
shock waves is quickly diminished owing to the presence of solid particles. (By
contrast, the strength of these waves in purely gaseous detonations in the highly
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Figure 17. Case C, inert particles. Spatial profiles of flow variables at t = 200 t1/2.

unstable regime is substantial; see Papalexandris et al. 1997). This implies reduced
shock-pressure variations owing to shock-overtakings.

Next, we discuss the effect of the particle volume fraction, particle diameter and
overdrive of the initial front in two-phase detonations with inert particles. The
simulations of the present study confirmed that the detonation velocity, Dav, varies
monotonically (decreases) with particle volume fraction. Figure 18 contains plots of
the variation of the average leading-shock speed, Dav, as a function of φs0 at various
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particle diameters. It can be observed that the drop of Dav in the region of small
φs0 is quite large. However, at larger particle volume fractions, the rate of decrease
of Dav drops significantly, and it appears that Dav approaches an asymptotic value.
This region of slow decrease of the shock-speed corresponds to quenched detonations.

In other words, increase of the particle volume fraction of the mixture leads
quickly to quenching of detonations (in the cases examined herein this occurs at,
approximately, φs0 = 0.0015). Beyond the quenching limit, the leading shock has
already lost most of its strength. Further increase of φs0 has only a minor effect on its
(already weakened) strength. Figure 18 also includes a plot of the dependence of the
equilibrium shock speed on φs0. As in the case of the direct simulations, at small φs0

the equilibrium shock speed decreases significantly, but at higher φs0 the decrease is
much slower. Nonetheless, the predicted shock speeds for two-phase detonations are
considerably higher than the equivalent equilibrium speeds, confirming the assumption
that the mixture right behind the leading front is far from phase equilibrium.

The effect of particle diameter on the shock speed, for various φs0 is plotted on
figure 19. We observe that Dav increases monotonically with the particle diameter,
independent of the value of the initial particle volume fraction. However, this increase
is very small. For example, at φs0 = 10−4, an order of magnitude increase on dp

(from 0.0005 to 0.005) produces only a 5.5% increase on Dav. Lafitte & Bouche
(1959) explained the decrease of detonation velocities with decreasing dp by arguing
that smaller dp under constant φs0 results in larger surface area of particles. This
implies intensified momentum and energy transfer from the gas to the particles. Our
simulations indicated that dp has a direct effect on the particle concentration in the
compaction zone; smaller particle diameters result in larger particle concentrations.
This phenomenon is in accordance with the above argument by Lafitte & Bouche
(1959) and can be related to the mechanisms that cause deceleration of the front.

As noted earlier, however, if the particles are reactive, the effect of particle diameter
is the opposite. Both our simulations that were presented above and those conducted



Numerical simulation of detonations 129

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
(×10–3)

2

3

4

5

6

7

8

9

dp

Dav

φs0 = 0.0001 

0.0004 

0.001 

0.005 

0.01 

Figure 19. Inert particles: variation of the average wave-speed with respect to particle
diameter.

by Loth et al. (1997) predicted that in mixtures with reactive particles, smaller
diameters result in higher detonation speeds. This occurs because smaller dp implies
faster particle burning, cf. (12). Obviously, the dependence of momentum transfer
between the two phases on the surface area is also present in mixtures of reactive
particles. The increased momentum transfer, however, is overcompensated by the
increase in the rate of heat release due to particle burning.

Numerical simulations with different overdrive factors have also been performed. It
was predicted that the effect of adding inert particles in a gaseous combustible mixture
is the same, regardless of the overdrive of the initial detonation. It was predicted that
the effect of the particle addition is slightly more pronounced in lower overdrives.
In other words, for fixed φs0, the percentage of the drop in the detonation velocity
is slightly higher at low overdrives. Nonetheless, the basic trend that was described
earlier (large velocity drops at small φs0 and detonation quenching at a critical value
of φs0) is always present regardless of the overdrive. Another result of our study is
that even gaseous detonations that exhibit highly unstable behaviour (such as those
with overdrive factors close to unity) can be stabilized with the addition of solid
particles.

6. Numerical results for two-dimensional detonations
In this section, we present numerical results for two-dimensional detonations in

mixtures of gases and solid particles. The same three cases as in the previous section
have been considered. The main objectives of this study are to gain insight into
the fundamental mechanisms that govern such flows, to investigate the effects of
multidimensionality, and to make comparisons between the structures of purely
gaseous and two-phase detonations.

Linear stability analysis of two-dimensional ZND waves predicts that in a wide
range of reaction parameters these flows can become unstable (Yao & Stewart 1996;
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Clavin, He & Williams 1997). These studies show that such flows are unstable unless
the activation energy is very small. Direct numerical simulations of two-dimensional
ZND waves have confirmed these results (see, for example, Oran, Kailasanath &
Guirguis 1988; Bourlioux & Majda 1992; Papalexandris et al. 2002; and references
therein). The most noticeable feature of two-dimensional purely gaseous detonations
is the formation of triple points on the leading front. The triple points have a non-zero
transverse velocity component and eventually collide with each other. These collisions
give rise to strong explosions that produce high over-pressures. The explosions make
the leading front expand and curve considerably. Another characteristic of these flows
is that the contact discontinuities that emanate from the triple points roll-up and shed
vortices in the wake of the leading front. These sheets detach from the front during
triple-point collisions and are subsequently convected away from the front.

The computational domain for the simulations is a rectangle with dimensions
80 × 10 L1/2. The initial condition consists of a transversally perturbed, planar ZND
wave, propagating in a quiescent medium. The resolution of the simulations was 20
points per L1/2. Periodic conditions are imposed on the top and bottom boundaries
and inflow conditions are imposed on the right-hand boundary. Finally, outflow
conditions (zero normal gradients of the flow variables) are prescribed on the left-
hand boundary. In order to save memory and computing time, the computations
have been performed on a moving frame. This is achieved by assigning a (constant)
negative velocity component for the two-phase mixture on the right-hand boundary
along the direction of the flow. In order for the instabilities to grow, the ZND wave
is allowed to propagate through 64 L1/2 of pure gas during the initial stages of the
simulation.

6.1. Mixtures with reactive particles

Results for Case A at t∗ = 48 t1/2 are plotted in figure 20. (t∗ represents time lapsed after
the ZND wave reached the two-phase mixture). The results depict the establishment
of a flow field that is symmetric with respect to the horizontal axis that passes through
the tip of the leading-front. Both gaseous and solid reactants burn rapidly inside a
thin zone that is attached to the front. The leading-front structure also contains two
triple points with opposite transverse velocities. The triple points eventually collide,
creating an explosion that forces the shock to curve and the gas to expand. As a result,
two new triple points are formed, moving in opposite directions. In this particular
case, triple point collisions occur periodically. The simulations showed that the whole
structure of the leading front oscillates periodically with time, which means that this
is a two-dimensional pulsating detonation. The periodic oscillation of the detonation
wave enforces the symmetry of the flow field behind it. Establishment of pulsating
two-phase detonations with such characteristics has been observed experimentally by
Zhang & Gronig (1992).

The evolution of the vorticity field behind the front for this case is particularly
interesting. Figure 21 contains contour plots of the magnitude of the vorticity field at
t∗ = 54 t1/2. This figure shows that vortices are shed by the contact discontinuities that
emanate from the triple points of the front. The contact surfaces are, in fact, shear
layers that become unstable and roll up. The particle volume fraction inside these
layers is high. The particles, however, have time to burn completely and, therefore,
their concentration at the rolled-up tails of the layers is zero. Figure 21 shows two
systems of contact discontinuities. The first one consists of the shear layers that are
still attached to the leading-front structure. The layers will detach during the next
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triple-point collision. The second system consists of shear layers that detached in the
previous collision and are located right behind the first system.

The flow field of this two-phase detonation is very similar to those computed for
purely gaseous detonations with low activation energy and overdrives; see Bourlioux &
Majda (1992), and Papalexandris et al. (2002). Those flows are also characterized by
periodic oscillations of the front and symmetric flow-fields. On the other hand,
the corresponding purely gaseous detonation (i.e. with the same gaseous reaction
parameters) has a multitude of unstable modes and is characterized by strong reflected
shocks and unburnt pockets of gas behind the main front.

Results for Case B are discussed next. The simulations show that the leading front
remains planar even though triple points have already been formed. Apparently, the
increased particle concentration of the mixture suppresses the transverse instabilities,
just as in mixtures with inert particles. Numerical results for this case, taken at
t∗ = 54 t1/2, are plotted in figure 22. It is worth mentioning that in the previous
section which dealt with one-dimensional flows it was predicted that the flow-fields
of Cases A and B were very similar. This similarity, however, is not extended to
two-dimensional flows because of the suppression of transverse instabilities that takes
place in case B. Nonetheless, it is still possible that the instabilities grow substantially
at a later time and produce a pulsating detonation similar to that developed in
Case A.

An important characteristic of this case is that the detonation velocity is slightly
higher than that predicted for case A, despite the substantial increase of φs0. By
contrast, in one-dimensional simulations, it was predicted that higher particle volume
fractions always result in lower detonation velocities. This phenomenon is apparently
related to the lower growth rate of the instabilities and might not persist at later
times.

Finally, we present results for the two-dimensional version of Case C. A sample of
results, taken at t∗ = 54 t1/2, are shown in figure 23. The plots show the development
of two strong triple points on the leading front. The shear layers that originate at the
triple points separate the domain behind the front into hot and cold regions. In the
hot regions, the gases react very rapidly. By contrast, the gaseous reaction in the cold
region proceeds slowly. At the same time, there is enhanced mixing of cold and hot
mixtures in the shear layers. As a result, large pockets of partially unreacted material
are formed. Once the reaction inside these pockets comes to completion, pressure
waves are emitted in all directions. Another interesting feature of this flow is that
the pressure gradients in the transverse direction are very small. The reason for this
‘one-dimensional’ character of the pressure field is that triple-point collisions have
not yet occurred. Hence, the shock has not obtained significant curvature, implying
that shock pressure is almost constant across the front. By contrast, the temperature
field has significant transverse gradients, induced by the presence of the shear layers.

6.2. Mixtures with inert particles

First, Case A was considered. It was predicted that the primary effect of the particle
addition is to suppress the transverse instabilities at the leading front. Triple points
are still formed along the front, but their strength is greatly reduced. As a result
triple-point collisions occur much less often than in the equivalent purely gaseous
detonation or the equivalent case with reactive particles. This contributes to the
preservation of a leading-front profile which is almost planar, i.e. it has very small
curvature. Further, the pressure behind the shock oscillates with time, just as in the
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corresponding one-dimensional case. Plots of the simulation for this particular case
have not been included herein for brevity.

There is significant transversal variation of the reaction rate even though the
curvature of the front is very small. This is a direct consequence of the triple-
point formation that occurs along the leading front. In fact, the flow instabilities
might be suppressed owing to the presence of particles, but they are not removed
completely. Consequently, the flow adjusts itself via the triple-point mechanism.
Part of the triple-point structure is a contact discontinuity. It separates material
with different temperatures and different volume fractions in reactive gas. The
numerical results further predict reaction zones that are longer than those in the
corresponding one-dimensional case. This is due to increased strain resulting from
the multi-dimensionality of the flow.

Numerical results of Case B are discussed next. Samples of these results, taken
at t∗ = 55 t1/2, are plotted in figure 24. In this case, the leading shock has curved
because of the flow instabilities. The point of the shock with the highest curvature
has been the centre of a triple point collision (and subsequent explosion) at an
earlier time. However, even for this case, triple-point collisions are not as strong as in
purely gaseous detonations; this suggests instability suppression by the solid particles.
The planar parts of the leading front are characterized by lower temperatures (with
respect to points with significant shock curvature), implying a slow-down of the
reaction progress. As a result, an induction zone is formed behind the planar parts of
the leading front. Inside this zone, the reaction is sustained due to thermal runaway.

Finally, results from the two-dimensional version of Case C are discussed. It was
predicted once again that the pressure behind the leading front is almost constant
along the transverse direction, and relatively low. Yet, formation and collisions
between (much weaker) triple points still occur. The burning of the material begins
in the vicinity of the explosion that follows such collisions. Elsewhere behind the
front the material remains almost unreacted. Therefore, particularly long induction
zones are formed. These zones eventually detach from the structure of the front,
thus forming large pockets of unreacted material. Once the temperature inside these
pockets reaches a certain threshold, the gas will react rapidly generating pressure
waves that will interact with the main front. Plots of the simulation for this particular
case have not been included herein for brevity.

Grid convergence studies for the cases presented above have also been performed.
It was observed that the differences in the numerically predicted evolution of the
detonations and the resulting flow fields decrease with successive grid refinements.
Also, the numerical predictions for certain global parameters (such as wave speeds,
time required for triple-point formation, etc.) showed small sensitivity on the grid
size. However, it should be pointed out that in cases with many unstable modes, such
as those presently examined, it is not realistic to expect point-to-point agreement
between results from different resolutions.

We conclude our discussion with some general remarks regarding the two-
dimensional simulations for two-phase detonations in mixtures with inert particles.
These simulations show that the addition of inert particles in a combustible gas always
reduces the detonation velocity and the burning rate of the gas, but it also suppresses
the instabilities of the leading front. Further, higher initial particle volume fractions
and/or smaller particle diameters decelerate the detonation and can eventually
quench it.

The predicted dependence of the flow fields on the particle volume fraction and dia-
meter agree qualitatively with the conclusions of the computational study of Loth et al.
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Figure 24. Case B, inert particles. Flow variables at t∗ = 55 t1/2. Two periods in the y-direction are plotted. (a) pg . (b) Tg . (c) z. (d) φ.
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(1997), as well as the earlier experimental study of Lafitte & Bouche (1959). Both of
these investigations concluded that the detonation velocity is more sensitive to φs0

than to dp and that sufficiently high φs0 or dp results in detonation failure. (By
contrast, the experimental results of Kaufmann et al. (1984) imply that the detonations
velocity is more sensitive to the particle diameter than to the volume fraction.) It is
also worth mentioning that the computed detonation structures are quite similar to
those predicted by Loth et al. (1997). More detailed comparisons cannot be made
owing to the differences in the flow models and the boundary conditions.

7. Concluding remarks
In this paper, the structure of detonations in mixtures of gases and solid particles

was examined numerically. The two-phase-flow model is based on the Eulerian
description of motion for both phases. The particles, in particular, are described as
an incompressible continuum. The model takes into account the volume occupied by
the particles, but it does not include terms for the modelling of compaction dynamics
phenomena. Further, it employs a simplified one-step reaction mechanism for both
cases. The governing equations form a system of hyperbolic conservation laws with
source terms which is solved numerically with a new unsplit solver. Algorithm
validation was performed via numerical convergence studies, comparisons with
reference solutions, and (whenever possible) comparisons with previous experimental
results.

Numerical simulations for both one-dimensional and two-dimensional detonations
were performed. It was predicted that the heat released by the particle burning
suppresses the instabilities of the leading front, while the momentum and energy
transfer from the gas to the particles results in lower detonation velocities and
longer reaction zones. Regarding the one-dimensional simulations of two-phase
detonations with reactive particles, the simulations predicted that the shock speed
drops monotonically with the particle volume fraction. Sufficiently high volume
fractions can cause detonation quenching. It was also confirmed that high particle
diameters reduce the velocity of the front because they lower the burning rate of the
particles.

Further, the simulations predicted the existence of three possible modes of
propagation, as observed in earlier studies. In the first mode, the single-front
detonation, the front is supported by heat release from both gaseous and solid
phase reactions. This is the mode with the highest propagation speed. In the second
and third modes (double-front, and pseudo-gas detonation, respectively), the front is
supported by the heat from the gaseous reaction only. Our studies further indicated
that steady-wave solutions are attainable for the first mode of propagation only.

The one-dimensional simulations for mixtures with inert particles predicted that,
owing to the absence of mass transfer between the two phases, the length of the
compaction zone increases with time. The detonation velocity drops rapidly with φs0.
Sufficiently large particle volume fractions result in detonation failure. When such
failure occurs, the reaction zone propagates with a velocity that is lower than that
of the compaction zone, provided that the gaseous flow is subsonic (with respect to
the laboratory frame) at the end of the reaction zone. Also, the detonation velocity
increases slowly with increasing particle diameter, owing to lower drag and heat
conduction between the two phases. Therefore, the effect of the particle diameter
is different from that in mixtures with reactive particles. It was further confirmed
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that the stability of the front is also influenced by the particle volume fraction and
particle diameter. Higher values of φs0 and lower values of dp enhance the detonation
stability.

Two-dimensional simulations provided further evidence for the stabilizing effect of
reactive solid particles. The improved stability characteristics of such flows suggest
that the injection of small heavy particles in the combustion chambers of detonation-
based propulsion concepts might be a viable alternative for performance enhancement.
Certain initial conditions resulted in pulsating detonations, characterized by periodic
variation of the geometry of the front and symmetrical flow-fields. Other initial
conditions resulted in detonations with an almost planar leading front. In these cases,
the transverse pressure gradients are very small. The shear layers that emanate from
the front are considerably prolonged and consist of relatively cold, partially reacted
mixtures.

Two-dimensional simulations for mixtures with inert particles also predicted the
suppression of the transverse instabilities which leads to smaller shock curvatures. The
mechanisms of triple-point formation and collision, commonly encountered in purely
gaseous flows, are still present, but the time scales associated with them are much
larger. Occasionally, triple-point collisions lead to the formation of jets consisting of
cold partially reacted gas and large numbers of particles. Such jets have not been
observed in purely gaseous detonations.

These simulations showed that larger solid volume fractions do not always
decelerate the detonation wave (see comparisons between the flow-fields of Cases
A and B with reactive particles). This means that conclusions from one-dimensional
simulations cannot always be applied to multidimensional flows. A consequence of
this constraint is, among others, that calibration of simplified chemistry models from
one-dimensional simulations might not be possible. Experiments with particle volume
fractions at the levels considered in the present study, although desirable, are still
difficult to perform for technical reasons, namely, difficulty in achieving uniformity of
the two-phase mixture for sufficient time.

The author wishes to thank Professor A. Leonard of the California Institute of
Technology for many fruitful discussions. He also wishes to thank the anonymous
referees of this paper for providing comments and suggestions which led to significant
improvements of the original manuscript.

Appendix
In this Appendix, we give the expressions for the convective velocities, ûi , i =

1, . . . , 10 that appear in the expressions, (33), of the vector fields of the manifolds
that are defined via (34). As mentioned in § 3, these velocities are introduced in order
to decompose the governing system (7)–(8) into a set of o.d.e.s. For each o.d.e., there is
a family of velocities that satisfies the decomposition (34). Each velocity corresponds
to a different path on the manifold where the particular o.d.e. is valid.

For computational purposes, we have selected the velocities with minimal norm.
Their expressions are:

û1 = − G4 − c2G1

|∇p̃g − c2∇ρ̃g| N1, N1 =
∇p̃g − c2∇ρ̃g

|∇p̃g − c2∇ρ̃g| , (A1)

û2 = − Ω1

|∇p̃g + ρ̃gcn · ∇ug| N2, N2 =
∇p̃g + ρ̃gcn · ∇ug

|∇p̃g + ρ̃gcn · ∇ug| , (A2)
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û3 = − Ω2

|∇p̃g − ρ̃gcn · ∇ug| N3, N3 =
∇p̃g − ρ̃gcn · ∇ug

|∇p̃g − ρ̃gcn · ∇ug| , (A3)

û4 = −
(
(G2, G3) − ρ̃−1

g ∇p̃g

)
· n⊥

|ug · n⊥| N4, N4 =
∇(ug · n⊥)

|∇(ug · n⊥)| , (A4)

û5 = − G5

|∇z| N5, N5 =
∇z

|∇z| , (A5)

û6 =
φs∇ · us − G6

|∇φs |
N6, N6 =

∇φs

|∇φs |
, (A6)

û7 = − G7

|∇us |
N7, N7 =

∇us

|∇us |
, (A7)

û8 = − G8

|∇vs |
N8, N8 =

∇vs

|∇vs |
, (A8)

û9 = − G9

|∇Ts |
N9, N9 =

∇Ts

|∇Ts |
, (A9)

û10 =
Ns∇ · us

|∇Ns |
N10, N10 =

∇Ns

|∇Ns |
. (A10)

In (A1)–(A10) c is the frozen speed of sound for the gaseous phase,

c =

√
γ p̃g

ρ̃g

, (A11)

while n is the unit vector normal on the cell interface, and n⊥ is the unit vector
normal to n. The algorithm, however, allows n to be an arbitrary but fixed spatial
unit vector. Also, Gi, i = 1, . . . , 9, are the source terms of the governing equations
written in primitive form. In other words,

G1 = Γ, (A12)

G2 =
Fx + Γ (us − ug)

ρ̃g

, (A13)

G3 =
Fy + Γ (vs − vg)

ρ̃g

, (A14)

G4 = (γ − 1)
(
F · (us − ug) + Q − q1R + Γ (csTs + q2 + 1

2
|us − ug|2)

)
, (A15)

G5 =
R − zΓ

ρ̃g

, (A16)

G6 = − Γ

ρ̃s

, (A17)

G7 = − Fx

ρ̃s

, (A18)

G8 = − Fy

ρ̃s

, (A19)

G9 = − Q

csρ̃s

. (A20)
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Finally, the terms Ω1,2 are given by

Ω1,2 = γ p̃g(n · (∇ug)n − ∇ · ug) + G4 ± ρ̃ga (G2, G3) · n. (A21)
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